
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out Inheritance2 from SVN

Exam 2 is on Tuesday, May 1, 2012 (7 – 9 PM)
Section 1: Olin 231
Section 2: Olin 233

 On ANGEL, under Lessons Assignments
 Preferences help me to choose teams; I also consider your

performance so far in the course
 Complete the survey by Monday, April 30, 2012, noon
 Most teams will have 3 students
 Are you willing to be on a team of 2
 List up to 5 students you'd like to work with, highest

preference first.
◦ You may not get your first choices, so it's a good idea to

list more than two
◦ Best to choose partners whose commitment level and

current Java coding/debugging ability is similar to yours
 List up to 2 students you'd prefer NOT to work with
◦ I'll do my best to honor this, but I must find a team for

everyone.

A quick recap of last session

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods
◦ all instance fields

 class SavingsAccount extends BankAccount {
 // added fields
 // added methods
}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

 Calling superclass method:
◦ super.methodName(args);

 Calling superclass constructor:
◦ super(args);

Must be the first
line of the subclass

constructor

 public—any code can see it

 private—only the class itself can see it

 default (i.e., no modifier)—only code in the
same package can see it

 protected—like default, but subclasses also
have access

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:
 public class String extends Object {…}

◦ Directly and implicitly:
 class BankAccount {…}

◦ Indirectly:
 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation
◦ For printing
◦ In the debugger

 getClass().getName() comes in handy

here…

Q3

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof
◦ Must compare state—use cast

 Example…

Q4

Review and Practice

 A subclass instance is a superclass instance
◦ Polymorphism still works!
◦ BankAccount ba = new SavingsAccount();
ba.deposit(100);

 But not the other way around!
◦ SavingsAccount sa = new BankAccount();
sa.addInterest();

 Why not? BOOM!

 Can use:
◦ public void transfer(double amt, BankAccount o){
 this.withdraw(amount);
 o.deposit(amount);
}
in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;
◦ CheckingAccount ca = …;
◦ sa.transfer(100, ca);

 If B extends or implements A, we can write
 A x = new B();

Declared type tells which
methods x can access.
Compile-time error if try to
use method not in A.

The actual type tells which
class’ version of the
method to use.

 Can cast to recover methods from B:
 ((B)x).foo()

 Now we can access all of
B’s methods too.

If x isn’t an instance of
B, it gives a run-time
error (class cast
exception)

Q5-7, hand in when done, then start reading BallWorlds spec

• Meet your partner
• Carefully read the

requirements and provided
code

• Ask questions (instructor and
TAs).

Check out BallWorlds from SVN

csse220-201230-BW01, andrewca, meltonej
csse220-201230-BW02, heidlapt, mooretr
csse220-201230-BW03, thomaszk, alvareap, andersjr
csse220-201230-BW04, kohlscd, weissna
csse220-201230-BW05, shomerrt, padillbt
csse220-201230-BW06, jonescd, mccormjt
csse220-201230-BW07, antleyp, beckerja
csse220-201230-BW08, dionkm, yeomanms
csse220-201230-BW09, rodriga, fagglr
csse220-201230-BW10, johnsom2, yoons1
csse220-201230-BW11, wintoncc, bearder
csse220-201230-BW12, armacoce, patterda

Check out BallWorlds from SVN

csse220-201230-BW21, yadavy, kowalsdj
csse220-201230-BW22, brindldc, bromenad
csse220-201230-BW23, earlesja, wellsdb
csse220-201230-BW24, huangf, hallami
csse220-201230-BW25, jennedj, petryjc
csse220-201230-BW26, finneysm, depratc
csse220-201230-BW27, brophywa, maibacmw
csse220-201230-BW28, fritzdn, phillijk
csse220-201230-BW29, lashmd, turnerrs
csse220-201230-BW30, brokllh, almisbmn
csse220-201230-BW31, abadbg, darttrf
csse220-201230-BW32, solomovl, iversoda

Pulsar, Mover, etc.

You can turn BallWorlds in on Monday before noon for
full credit. If you miss that deadline, you may turn it in
by Tuesday at 11:59 p.m. for 90% credit.

	CSSE 220 Day 20
	Questions?
	Project Team Preference Survey
	Inheritance Review
	Inheritance
	Notation and Terminology
	Inheritance in UML
	With Methods, Subclasses can:
	With Fields, Subclasses:
	Super Calls
	Access Modifiers
	I, Object
	Object
	Object Provides Several Methods
	Overriding toString()
	Overriding equals(Object o)
	Polymorphism
	Polymorphism and Subclasses
	Another Example
	Summary
	BallWorlds
	BallWorlds Teams – Section 1
	BallWorlds Teams – Section 2
	BallWorlds Worktime

